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ABSTRACT

A flux-corrected transport scheme due to Zalesak (1979) is used to numerically simulate

thermal convection in a two-dimensional layer of ideal, diatomic gas, which is heated from

below and stratified gravitationally across many pressure scale heights. The purpose of this

calculation is to mimic the physical conditions in the outer layers of the protosolar cloud

[PSC] from which the Solar System formed. The temperature To at the top boundary (z = 0)

and the dimensionless temperature gradient 0 = (d/To)OT/_z at the base of the layer of

thickness d are kept fixed, with 0- 10. The initial atmosphere is uniformly superadiabatic,

having polytropic index rain = 1. Because the Reynolds number of the real atmosphere is so

large, a subgrid-scale [SGS] turbulence approximation due to Smagorinsky (1963) is used to

model the influence of motions whose length scale is less than the computational grid size.

The flow soon evolves to a network of giant convective cells, which span the whole layer. At

cell boundaries the downflows are spatially concentrated and rapid while the upflows are

broad and sluggish. The peak downflow Mach number is Mpeak = 1.1 at depth z = 0.55d. The

descent of the cold gas eliminates much of the initial superadiabatic structure of the

atmosphere for z >_0. ld, thereby reducing the long-term mean temperature gradient d_t/dz

and causing a sharp rise in mean density ,_,(z) towards the base.

In the top 10 percent of depth, SGS modelling causes dT_t/dz to increase sharply. A steep

density inversion occurs with ,_t(0) rising to 3.5 times the initial density P0 at the top

boundary. This result gives new credibility to the modem Laplacian theory [MLT] of Solar

System origin. Here a postulated 35-fold density increase at the surface of the PSC causes the

shedding of discrete gas rings at the observed mean orbital spacings of the planets (Prentice

1978a, 2001a). Even so, further numerical simulations, corresponding to higher values of 0,

that may yield values Mpeak -_ 3 and _t(O)/Po _- 35, are required before the MLT can be

considered to be valid.
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1. INTRODUCTION

1.1 Background

The process by which the Solar System was formed remains poorly understood despite the

great wealth of new information about its physical and chemical structure that has been

obtained through interplanetary space probes and Earth-based observations. A major problem

in reconstructing what happened in the past is that much of the detail of the early Solar

System record has been lost. Such a loss has occurred both through internal processes, such

as plate tectonics within the Earth which has erased the initial crater record, and through

external interactions. An example of the latter is tidal action. The three inner Galilean

satellites of Jupiter most likely experienced profound structural change at some unknown

point in the past as the result of heat generated by the frictional dissipation of tidal energy

produced during passage through orbital resonances (Tittemore 1990; Malhotra 199 l).

In attempting to understand how the Solar System was formed, it is very important, therefore,

to first concentrate on explaining the broad physical and chemical features that have

remained unchanged since the beginning. Such features include the near circularity of the

planetary and regular satellite orbits and the nearly uniform gadation with orbital distance of

the uncompressed mean densities of the planets and Galilean satellites. Such theories, which

can satisfactorily account for these basic features, can then be further tested by their ability to

explain other, secondary, features and to make useful predictions that can be checked by

future observations. Even so, as Woolfson (1993) has noted, 'the nature of the cosmogonic

problem ... is that the term correct cannot be applied to any theory.' Further, owing to the



complexity of the Solar System, it is very unlikely that its structure can be accounted for by

any one single process, or theory, anyway. It is important, therefore, to keep track of the

merits of all physically plausible theories. Woolfson (1978, 2000) himself has been

responsible for the development of the Capture Theory of Solar System origin. This theory is

a modem, quantitative extension of the wandering star hypothesis of Jeans (1917) and

Jeffreys (1918). It is able to explain many important features of the Solar System, including

the broad distributions of planetary mass and angular momentum. It can also account for

several minor features as well, such as the inclinations of the planetary spin axes, especially

that of Uranus, and also the tilt of the solar spin axis relative to the mean plane of the

planetary system.

1.2 The Modern Laplacian Theory of Solar System origin

The present paper is concerned with the mathematical foundation of the modem Laplacian

theory of Solar System origin (Prentice 1978a, 1978b, 1996a, 1996b, 2001a; Prentice &

ter Haar 1979). This theory, dubbed the MLT, is a modem reformulation of the original

nebula hypothesis of Laplace (1796) according to which the planets condensed close to their

present orbital radii from a concentric system of circular gas rings. These rings were shed

somehow from the equator of the primitive cloud of gas, which had contracted inwards from

the orbit of Neptune to form the Sun, some 4.5 x 10 9 yr ago.

Laplace did not specify the physical mechanism by which the protosolar cloud (hereafter, the

PSC) abandoned discrete gas rings. In the MLT it is suggested that this mechanism is



supersonicturbulentconvectiondrivenby the heatreleasedthroughthe steadygravitational

contractionof the cloud.It is assumedthatnearthe surfaceof the PSCthereexisteda radial

turbulentstress(ptvt2) arising from buoyancy-driventhermal convectionhaving magnitude

-30-40 timesthe local gaspressurepga_ =pg_T/Iz- Here Pt and vt are the mass density and

radial velocity of moving material; and p, T, and/z are the local mean density, temperature,

and molecular weight. 9_ is the gas constant. Turbulent stress of such magnitude implies

convective speeds vt that are nearly an order of magnitude larger than the local isothermal

sound speed Viso = _-T-/-/_. If such a stress did exist it would greatly expand the outer

tenuous layers of the cloud, so lowering its axial moment-of-inertia factorf (Prentice 1973).

This means that the PSC is able to rid excess spin angular momentum at the expense of

losing very little mass from its equator, assuming that the turbulent viscosity arising from the

convection causes the cloud interior to rotate with a nearly uniform angular velocity (Prentice

1978a). This helps account for the low mass of the planetary system relative to the Sun.

Next, it is supposed that the degeneration of all radial turbulent motions in the convectively

stable layers above the photosurface results in a very steep density inversion by the factor

p+/p_ = 1 + [Otvt2)/Pgaslpla - 30-40 (1)

Here p_ denotes the gas density of the fully turbulent material just below the photosurface

[ph] and p+ is the density at the base of the lid of non-turbulent gas just above it. When

rotation is taken into account, the spherical lid of non-turbulent gas evolves into a dense,

belt-like structure at the equator of the fully rotating cloud. The contracting PSC is now able



to disposeof excessspin angularmomentumby detachinga discrete family of orbiting gas

rings whose orbital radii Rn (n = 0, 1, 2, ...) satisfy the equations

R_/R,+_ _ [1 + m,/M_f_]" (2)

Here mn denotes the mass of the nth ring, and Mn and f, are the residual mass and moment-of-

inertia factor of the cloud at the moment of ring detachment. Hence, if the gravitational

contraction occurs homologously, so that both m,,/Mn and f, stay sensibly constant, then the

R, form a geometric sequence similar to the Titius-Bode law of planetary distances. Typically

if Q)tvt 2) _ 35pgas, SO that pip_ _- 35, then mnlM,, _ 0.006, f_ _ 0.02 and R,,IR,,+1 _ 1.7. The

observed mean geometric spacing ratio of the planets is ( R,/R,+ 1)obs -_ 1.72 _+ 0.23.

A more detailed account of the workings of the MLT, especially in regard to its capacity to

make detailed quantitative predictions for the bulk chemical structure of the planetary system

and for the physical, orbital, and bulk chemical structure of the Galilean satellites of Jupiter,

is given elsewhere (Prentice 2001a, 2001b, 2001c).

1.3 Layout

The rest of this paper is arranged as follows. In Section 2, attention is drawn to the 10-fold

discrepancy which exists between the size of the radial turbulent stress _OtLIt2) that is needed

for the PSC to shed discrete gas rings at its equator and the maximum dynamical pressures

pw 2 that emerge from actual numerical simulations of supersonic thermal convection

(Cattaneo, Hurlburt, & Toomre 1990; Malagoli, Cattaneo, & Brummell 1990; Cattaneo et al.



1991).Here w denotes the vertical component of the large-scale convective flow. It is then

pointed out that all existing computational simulations are restricted to flows having

Rayleigh and Reynolds numbers that are typically a factor -10 6 less than the values

characteristic of true stellar and protosolar atmospheres. This restriction is imposed by the

limit on computational capacity. Essentially, the present simulations are unable to include the

contributions of the small-scale turbulent flows whose scale is less than the computational

grid size. To get around this problem, a subgrid-scale eddy viscosity formalism devised by

Smagorinsky (1963) for use in meteorology is introduced in Section 3.

Next, the mathematical equations and parameters which control compressible thermal

convection in a two-dimensional [2D] model atmosphere are set out in Section 4. In

Section 5, a flux corrected transport scheme constructed earlier by Dyt & Prentice (1998) for

numerically solving the system of gas dynamic equations is briefly outlined. The results of a

complete computational simulation for the onset and development of supersonic thermal

convection in a model atmosphere which has the same boundary conditions and defining

parameters as those used by Cattaneo et al. (1990, 1991), but with the viscosity and thermal

diffusivity now due to subgrid-scale turbulence rather than molecular diffusion, are presented

in Sections 6 and 7. The highlight of these calculations is the discovery of a sharp and

significant density inversion at the top boundary of the atmosphere. The important

implications of this exciting discovery for the MLT are discussed in the concluding Section 8.

These results were first reported to the 32 nd annual meeting of the AAS Division of Planetary

Sciences in Pasadena, California (Prentice & Dyt 2000).



2. PREVIOUS SIMULATIONS OF SUPERSONIC THERMAL

CONVECTION

2.1 The mismatch between the needs of the MLT and results of existing numerical

simulations

Despite the potential of the MLT as a good-working hypothesis of Solar System origin, a

major stumbling block is the model's dependence on very large non-thermal stresses arising

from supersonic turbulent convection. Stresses _OtOt2) of magnitude up to -35 times the local

gas pressure Pgas = pg_T/lz are needed to produce a density inversion at the photosurface of

the PSC, which is large enough for the cloud to shed discrete gas rings. Such stresses imply

mean convective speeds ot that are some five times larger than the local adiabatic sound

speed Vaa = yff_-_-/3, where y = 1.4 is the ratio of specific heats for a diatomic gas. Here then

is the problem: Detailed numerical simulations of very strong thermal convection in

thermally unstable atmospheres that are stratified _avitationally across many pressure scale

heights h = 9_T/#g, where g is the local gravitational acceleration, indicate that the local

Mach number M = (vt)/Vaa is always less than -3. A brief account of these simulations

follows.

2.2 Early subsonic simulations

In one of the earliest computational simulations of compressible thermal convection in a

model stellar atmosphere, Hurlburt, Toomre, & Massaguer (1984) discovered the existence of

strong, downward-directed plumes, which traversed the full depth of the layer. But the Mach

numbers of these flows were everywhere subsonic. Similar results were also reported by



Chan,Sofia, & Wolff (1982) and Chan& Sofia (1986, 1989).Both of the abovegroups,

however,had assumedonly a modest level of convectiveinstability as measuredby the

dimensionlessRayleighnumberRa= L2U2/vK. Here L denotes a characteristic length scale

for the system, U (or (vt)) is a characteristic velocity of the flow, and v and K denote the

molecular kinematic viscosity and thermal diffusivity, respectivity. No convective motion at

all ensues unless Ra exceeds a critical value -660 (Gough, Moore, Spiegel, & Weiss 1976).

And unless Ra _>5 x 105, the convective flow remains steady, subsonic, and non-turbulent.

Essentially if Ra _ 5 x l0 s, the rate of thermal diffusion by molecular processes is

sufficiently rapid to prevent the development of density and temperature fluctuations large

enough to make the convection turbulent.

Recently, Porter, & Woodward (2000) have complemented the study of Hurlburt et al. (1984)

and that of the Chan& Sofia group by taking advantage of _eatly improved computational

power to increase spatial resolution. This work has led to a much better understanding of the

production of small-scale features in the convective flow. A major distinction between the

two sets of calculations is that Porter & Woodward assume that the fluid has no explicit

viscosity. This means that they are modelling a slightly different physical system. Even so, it

is reassuring that most of the large-scale flow features reported earlier, such as the existence

of strong downflow plumes which traverse the full depth of the modelled atmosphere, are

retained in the passage to higher resolution. They report a maximum Mach number of 0.8 in a

horizontal flow near the top boundary.
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2.3 Supersonic turbulent convection in the regime of low Rayleigh and Reynolds

numbers

Cattaneo et al. (1990) were the first to carry out a numerical simulation that demonstrated the

existence of time-dependent, supersonic turbulent convection. They modelled a 2D section of

a thermally unstable layer of an ideal gas having a ratio of specific heats y = 1.4. The

dimensionless, uniform temperature gradient of the initially stationary atmosphere of

thickness d and upper boundary temperature To is 0 = (d/To)OT/cqz - 10, where z denotes the

vertical distance below the upper boundary z = 0 and 0 < z < d. The initial polytropic index is

min = 1. Again it is assumed that the thermal conductivity and shear viscosity are constant

and arise entirely from molecular diffusion. For Ra _ 5 x 105, Cattaneo et al. (1990) report a

peak Mach number of 2.7 in a horizontal flow near the top boundary. Malagoli et al. (1990)

extended this simulation to three dimensions [3D] and found that many of the features seen

in the 2D calculations survive to 3D. At depth z= 0.125d, the maximum Mach number

oscillates about an average of 1.55. This implies a maximum ratio of vertical dynamical

stress pw 2 tO gas pressure that is _M 2 _ 3-4. This falls a long way short of the value -35

needed by the MLT.

The most vigorous case of 3D compressible convection that has so far been investigated is

that of Cattaneo et al. (1991). This case, corresponding to Ra = 1.3 × 10 6, defines the upper

limit of their computational capacity. Regions of supersonic flow are now always present

near the upper boundary of the modelled zone. The spatial structure of the flow is much more

complex than that of the low Ra simulations. Strong cooling at the upper boundary results in



theproductionof a layer of low entropygasanda networkof strong,spatially concentrated

downflows.Theseextendto the baseof the atmosphere.The upflows, however,tend to be

broad,sluggish,and lessorganized.The samegeneralpicturewasalso observedby Dyt &

Prentice(1998) in a modest2D simulationof supersonicthermalconvection.They pointed

out that the asymmetryin the relative strengthsof the upflows and downflows is directly

traceableto the condition of fixed temperaturethatis imposedat the upperboundary.This

conditionensuresa constantsupplyof dense,low entropygaswhosedownfall readily cools

thedeepinterior of the atmosphere.Again supersonicspeedsareachievedin the downflows,

but themaximumdynamicalstressbarelyexceedsthegaspressure.

2.4 A way forward: the need to model the regimes of very high Rayleigh and

Reynolds numbers

Now in all of the above numerical simulations it has only been possible to model the thermal

convection at the low end of the turbulence regime. This is because the available

computational capacity (up to 963 grid points in the 3D simulations of Cattaneo et al. (1991)),

places a corresponding upper limit -10 6 on the maximum Rayleigh number Ra of any

convective flow that can be spatially resolved at every length scale. But for a true stellar

atmosphere Ra a 1015 (de Loore 1970). A similar estimate -1012 applies to the other

important measure of the state of turbulence in the flow, namely the Reynolds number

Re = LU/v (Cattaneo et al. 1991). It is clear, therefore, that there must be many important

aspects of supersonic turbulent convection that have so far remained unmodelled. The real



problemto dealwith then is thegreatrangeof distancescalesacrosswhich fully developed

turbulenceoperates.A schemefor dealingwith this situationis introducedbelow.

3. THE SUBGRID-SCALE (SGS) TURBULENT VISCOSITY

FORMALISM

3.1 The problem of high Reynolds number

Perhaps the most important piece of information needed to numerically simulate turbulent

convection in a stellar/protosolar atmosphere is the specification of viscosity and its relation

to the spatial resolution of the flow. Now as mentioned in Section 2, the Reynolds number,

viz Re = LU/v, of the solar atmosphere is estimated to be of order 1012 (de Loore 1970). Here

L and U are the characteristic length and speed of the convection, and v is the molecular

kinematic viscosity. The smallest identifiable feature in the convective flow has a size

comparable with the Kolmogorov length scale /K= (v3/e) TM, where e is the bulk viscous

dissipation rate per unit mass (Landahl & Mollo-Christensen 1992, p.10). This latter quantity

has the same order of magnitude as the kinetic energy injection rate -U3/L of the largest

eddies. To resolve all spatial features of the flow would thus require L/IK = O(Re TM) = 109

grid points in each coordinate direction. To completely resolve a 3D flow will require around

10 27 grid points. This, of course, is an impossible task for any computer.

An obvious solution to the problem of high Re is to drastically increase the effective

viscosity v. This, however, raises a new problem in that a different physical system is now

being modelled. It is for this reason that the Cattaneo group have adopted a 'bottom-up'

10



approach to the problem. That is, they keep v fixed as a constant, corresponding to the

molecular viscosity value, and work the calculations up to the maximum computationally

achievable value of Re, namely about 106 . An alternative approach is to work 'top-down.'

That is, to numerically simulate only the large-scale motions of the flow, down to the spatial

resolution defined by the grid size A in the computational domain. One can then introduce a

turbulent eddy viscosity formalism to model the influence of the small-scale motions whose

size is less than A. This approach, which is known as subgrid-scale [SGS] modelling, was

first introduced by Smagorinsky (1963) in a landmark study of the general circulation of the

Earth's atmosphere. The method has a sound theoretic base and has been tested successfully

in a wide variety of fluid dynamic and thermal convection applications (Deardorff 1971;

Chan & Sofia 1986; Fox, Sofia, & Chan 1991).

3.2 The velocity-dependent turbulent viscosity vt

The SGS modelling technique works as follows. According to the Kolmogorov (1941) theory

of 3D isotropic turbulence, molecular viscosity causes large-scale features of the flow to

decay into small ones which, in turn, break down into even smaller ones until the

Kolmogorov length scale IK is attained. In terms of the Fourier wave number spectrum of

specific kinetic energy, namely E(k, t), where k is the wave number and t the local time, there

is a progressive cascade of energy from small to large wave numbers k. When statistical

equilibrium is attained, there exists an inertial subrange k << kK for which E(k, t) is both

independent of the viscosity v and scales as k -5/3 (Landahl & Mollo-Christensen 1992, p. 59).

In that case, it should still be possible to faithfully model the large-scale features of the

11



system by choosing a much larger turbulent viscosity vt such that the effective Reynolds

number Ret = (v/vt) Re now lies within the capacity of the computer, namely Ret < 10 6.

Smagorinsky (1963) related vt to the deformation tensor

</
S,i 2_.&j + &i)

of the large-scale velocity field ui (i = 1, 2) according as

Vt = (Cva)2_/_'-_2

where S 2 = SoSij.

(3)

(4)

Such a construction yields a long-term Fourier spectrum E(k) for the

| 0

kinetic energy per unit mass 7u" which, for a suitable choice of the dissipation constant Cv,

exhibits the familiar Kolmogorov power law cascade at length scales comparable with the

mean 2D grid size A = (AxAy) t/2. That is, the grid cutoff wave number kc = L/A lies within

the inertial subrange (Lilly 1971; Deardorff 1971; Lesieur 1997). Now the constant Cv

controls the kinetic energy dissipation rate. Choosing Cv = 0.4, the dissipation rate at k = kc

matches the energy injection rate at low wave numbers and E(k) follows the -5/3 law. This

value is appropriate to 2D studies of atmospheric circulation. A somewhat smaller value, viz

Cv = 0.2, emerges from 3D studies (Deardorff 1971).

3.3 The turbulent thermal diffusivity tot

It remains to specify the thermal diffusivity x. Now as the Peclet number Pe = LU/x in a

stellar atmosphere is also extremely large if x is derived from molecular processes (de Loore

12



1970),it is againnecessaryto adoptanSGSeddyformalismto modelthetransferof heatto

thesubgridlengthscales.Following Chartet al. (1982)andChart& Sofia(1986),we adopta

turbulentthermaldiffusivity Kthaving thesamefunctional formasvt. We have simply

K-, = v,/c 5 (5)

where at is the turbulent Prandtl number. This number is assumed to be a constant.

What little is known about the quantity at is that at < 1. This is because the thermal energy

that is produced by the viscous dissipation of kinetic energy at short wavelengths needs to be

re-injected back into the system at longer wavelengths in order to prevent a massive build-up

of heat at the grid cutoff wavelength 2c = A. In fact, looking ahead to equation (12) in

Section 4, we see that the heat diffusion term matches the viscous energy production term

when the ratio of operating wavelengths is

A_//l v _ [y/(y - 1)or, 1,,2 (6)

The numerical investigations of Deardorff (1971) suggest that _t = 1/3. This gives 2.,_/.g _ 3,

noting that 7/5 < _, < 5/3. This result was also confirmed by Dyt (1997) when carrying out

test simulations of thermal convection in the protosolar atmosphere. He found that if at = 1/2,

then the wavelengths at which thermal energy is injected back into the system as kinetic

energy, via the action of buoyancy, lies too close to those from which kinetic energy is being

removed by viscosity to prevent a build-up of energy at 2 = 2c. Such a system soon becomes

numerically unstable. We therefore adopt the choice _rt = 1/3.

13



4. EQUATIONS AND PARAMETERS OF THE MODEL

ATMOSPHERE

4.1 The gas dynamic equations

The model atmosphere is a 2D section of an ideal gas layer which is bounded above and

below by two horizontal and impenetrable edges that are separated by a vertical distance d.

We let x and z denote Cartesian spatial coordinates with z measured downwards from 0 to d.

The flow is assumed to be horizontally periodic over the distance Xd, where X = 4 is the

aspect ratio. This is chosen large enough so that the condition of periodicity does not

introduce a spurious time dependence into the convective flow (Hurlburt et al. 1984).

The initial atmosphere is assumed to be stationary and to have a superadiabatic polytropic

structure with temperature Tin and density Pin distributions given by the equations

Tin(X, Z) -- To (1 + Oz/d) (7a)

Pin(X, Z) = P0 (1 + Oz/d) rain (7b)

Here To and Po denote the temperature and density on the upper boundary (z = 0) and 0 is a

dimensionless parameter that defines the initial temperature gradient in the atmosphere. The

initial gas pressure distribution is Pin(X,Z) =Pinff{Tin//_. The atmosphere is subject to a

uniform gravitational acceleration g, which is assumed to be directed vertically downwards

along the axis Oz. The condition for hydrostatic equilibrium in the initial atmosphere yields

min + 1 = Izgdl_ToO (8)

14



As long as min < (y--l) -1, where 3: = cp/c,, is the ratio of principal specific heats cp and co, and

cp - c_ = 'N/y, the atmosphere is thermally unstable. Convective motion then quickly ensues

provided that the Rayleigh number Ra exceeds a critical value -660 needed to overcome

viscous resistance and thermal diffusive loss (cf. Gough et al. 1976).

We now choose the layer thickness d as the unit of length and to = d /_/-_00/_ as the unit of

time. This quantity is the isothermal sound crossing time evaluated at the top boundary

(z = 0). Next, we define xl = x/d and x2 = zld to be the dimensionless spatial Cartesian

coordinates and u_ and u2 to be the corresponding dimensionless velocities of the flow,

expressed in units of the top boundary isothermal sound speed v0 = _o//J • If p, T, and p

denote the dimensionless density, temperature and pressure, expressed in units of P0, To and

Po = po'JtTd#, the set of dimensionless tensor equations which control the convection are

Conservation of mass:
c3t Oxj

Conservation of momentum (i = 1, 2):

0

-_(pu,)- 0 (puiuj)_ Op + __,(pv,_,:)+(mi n +1)0p6i2 (10)
Ox: Oxi Ox:

Ou i Ouj 2 Ou k
= ---t- (_ij (11)

where crij c3xj Ox i 3 Oxk

Conservation of energy:

oe,_ o (e, +p).j + ox--;Ot Oxj + O_j(lOvto'ijui)+

where E, = lpuiu, + p/(y _ 1)

(min +l)Opu 2 (12)

(13)
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Perfect gas equation of state: p = pT (14)

This set of equations enables us to solve uniquely forp, T, p, ul, u2, and the stagnation energy

Es. The solution is controlled by the parameters m, 0, and y. The turbulent kinematic viscosity

vt and turbulent diffusivity xt are defined in Section 3.

4.2 The boundary conditions

To complete the statement of the mathematical problem, it is necessary to specify the

boundary conditions. These are the same as the ones chosen by Cattaneo et al. (1990, 1991)

and Dyt & Prentice (1998), namely

U 2 = 0 and c3ul/c3x2= 0 at x2 = 0, 1 (15a)

T = 1 at x2 = 0, OT/Ox2 = 0 at X2 -- 1 (15b)

The constraints on the velocity components uj and uz follow directly from the assumed

stress-free and impenetrable nature of the upper and lower boundaries. The condition of fixed

temperature gradient 0 at the lower boundary models a system where there is an assumed

steady injection of heat into the base of the atmosphere. The condition of constant

temperature T = 1 at the top boundary requires some physical justification. First, it is the one

that has been adopted by the Cattaneo group. The Chan group has adopted a very similar

condition, namely one of constant entropy, at the top boundary. Second, in the case of the

protosolar or protoplanetary clouds (Prentice 1978b, 2001a), the photosurface defines the

upper boundary of the convective zone. It is from this level that all of the heat generated
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throughthe gravitationalcontractionof thedeepinterior of thecloud canbe finally radiated

freely into space.But the radiative flux L oc Tph4 depends directly on the photosurface

temperature Tph and not on the outward temperature gradient c_T/Oz. In modelling the outer

convective zone of a protosolar or protoplanetary cloud of, say, given luminosity, it is

appropriate, therefore, that we choose the condition of constant temperature at the upper

boundary.

In the present work we have ignored the contribution of radiation in the heat transfer process

in the model atmosphere. This may possibly be a reasonable approximation since the

radiative conductivity Kradcx:: T3/p becomes small relative to the turbulent conductivity xt in

the upper levels of a convective stellar atmosphere (cf. Fox et al. 1991). Next, it is true that

for main sequence stars and high temperature stellar objects, mag-netic forces exert a

dominant influence on the energy transfer mechanism at the photo-surface. But for the

protosolar cloud--and especially for the clouds that formed Jupiter and Saturn--the surface

temperatures are quite low (typically Tph z 2000 K). Ionization levels are thus also low and

indeed negligible throughout the cloud's interior during the early stages of its gravitational

contraction from the orbit of Neptune (Prentice 1978a, b). Magnetic phenomena can thus be

safely ignored in the present study.
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5. THE NUMERICAL SCHEME

5.1 The flux-corrected transport scheme

The partial differential equations (9), (10), and (12) are solved numerically using a flux-

corrected transport scheme that was originally devised by Boris & Book (1973) and

improved later by Zalesak (1979). The Zalesak flux-corrected transport scheme (hereafter

ZFCT) provides a means for accurately solving the equations of gas dynamics when steep

gradients and shocks are encountered. Such features are a characteristic of supersonic flow.

Unfortunately, they are also a source of numerical error in the solution. The error is generated

in the treatment of the advective components a(Quj)/Oxj of the partial differential equation.

Here Q denotes a physical quantity of the flow, such as the gas density p. Although

computational schemes of first-order in spatial accuracy are stable in regions of rapid change,

they yield solutions that suffer from severe numerical diffusion. Higher-order schemes are

able to preserve the height and width of any modelled impulse, but produce unphysical

oscillations in its bow and wake. ZFCT operates by combining the schemes of first and

higher order in a manner which both restores diffusive loss and corrects for any unphysical

ripples. A more detailed description of how the scheme operates is given in Dyt & Prentice

(1998).

5.2 Specifying the computational domain

The two-dimensional model atmosphere consists of 200 x 50 uniformly-spaced rectangular

cells whose sides are aligned with the coordinate axes Ox and Oz, respectively. The physical

dimensions of the sides are Ax = Xd/200 = 0.02d and Az = 0.02d. The centre point of each
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cell is denotedby (x,,zj) with i = 1, 2, ... 200 and j = 1, 2, ... 50. All physical quantities Q

are computed at the centre position of each cell (i,j) and the values denoted by Q_j. The

initial polytropic atmosphere is defined by equations (7a) and (7b) with polytropic index

rnin = 1 and dimensionless temperature gradient 0-10. These are the values chosen by

Cattaneo et al. (1990, 1991). The initial temperature contrast T_/To between the base (X 2 = 1)

and top (x2 = 0) boundaries is thus T1/To = 1 + 0 = 11. Since the ratio of specific heats is

7 = 1.4, the choice min = ! ensures that the atmosphere is everywhere strongly superadiabatic

prior to the onset of convection.

6. RESULTS: FLOW STRUCTURE AND ENERGY FLUXES

6.1 Early stages of the convection

A small perturbation of temperature is introduced at several cell points near the top of the

initially stationary atmosphere. After time t = 2 units, where the unit is to as defined in

Section 4, the buoyancy-driven disturbance has propagated through the entire computational

domain. The velocity flows are everywhere small and chaotic. The horizontally averaged

temperature and density distributions, namely T(z,t) and _(z,t) hardly differ from the

initial profiles defined by equations (7a) and (7b). By time t = 4, however, the velocity field

begins to take on a less chaotic pattern with the emergence of two well-defined horizontal

pairs of giant convective cells of opposing circulation. These cells span the full depth of the

atmosphere.
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At this stage the vertical gradient OT-/az of the horizontally-averaged temperature profile

begins to flatten off in the lower 90 percent of the atmospheric depth. This leveling off is due

to the strong, spatially-concentrated downdraft of cold, low-entropy gas which forms at the

top boundary. The descent of this cold gas destroys the excess superadiabaticity of the lower

atmosphere. The bottom 25 percent of depth actually becomes progressively subadiabatic,

with the the horizontally-averaged polytropic index _(z, t) - 0(ln ,_) / 0(ln T) exceeding the

adiabatic value maa = 2.5 everywhere except as z _ d, where _(d, t)= 1 because of the

imposed temperature gradient given by equation (15b). In stark contrast with the

circumstances in the lower atmosphere, the mean temperature gradient in the upper 10

percent of depth steepens up. At time t = 4, OT/Oz at z = 0 is about 5 times the initial

dimensionless slope [0 = 10]. This implies a dramatic increase of superadiabaticity in those

parts. In fact the increase is so great that the mean polytropic index g(z,t) actually becomes

negative.

6.2 The long-term, quasi-equilibrium state

As time progresses, the random nature of the early, large-scale velocity field disappears, and

the convective flow becomes more settled. By time t = 10, the system has achieved a stable,

quasi-equilibrium state, judged by when the ratio of the total heat flux at the top boundary

(Ftop) to that at the base (Fbase) remains close to unity. The total heat flux Ftot(Z) at depth z and

its various components are defined in Section 6.3. At the top and bottom boundaries all heat

transfer occurs via thermal diffusion. Fig. 1 shows a plot of Ftop, Fbase and Ftop/Ft,ase as a

function of time t. Unlike the numerical simulations of Hurlburt et al. (1984) and Cattaneo et
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al. (1990, 1991), the heat flux at the base of the atmosphere, namely Fbase oc p_c,c_T/Oz :=_,

is not constant. This is because the thermal diffusivity Kt now depends on the velocity field,

which remains unsteady. The same is true for the diffusive heat flux at the top, namely

Ftop oc pK, c3T/az :=0 - Thus by time t -- 10, the ratio Ftop]Fbase reaches unity. Thereafter this

ratio fluctuates randomly about this mean by +15 percent over a time scale of about 10 units.

We may describe this behaviour as the evolved, long-term turbulent state of the system.

Fig. 2 shows the contours in the (x_, x2) plane of constant temperature T(x l,x2,t ) and density

p(xl,x 2,t) along with the flow lines of the velocity field, all at time t = 60. Most notable in

these diagrams is the existence of an extremely strong downflow of cold, dense gas near

xl = 1.3. Here the temperature contours take a sharp downward dip while the density

contours shift upwards indicating the presence of very dense gas at the head of the downflow.

Near xa = 3.8 there is a corresponding broad updraft of warm, light gas. But the departures

T'(xl,Xz,t) and p'(x_,x,,t) of temperature and density from the local horizontal averages

T(xz,t) and ,_(x2,t) are here quite small compared to those present in the spatially

concentrated downflow at x_ = 1.3. The peak downflow speed w at x_ = 1.3 is 2.8 times the

isothermal sound speed unit v0, computed at the top boundary. It occurs at depth x2 = 0.55

and has local adiabatic Mach number M = W/Vaa = 1.08. The peak upflow speed occurs at

xl = 3.8 is 2.0v0. It occurs at depth x2 = 0.65 and has M = 0.65. Overall, the convective

speeds obtained in this simulation are quite modest. Supersonic speeds are attained only in

the rapid downflows at mid-depths and in parts of the horizontal flow near the top boundary.
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6.3 Energy transfer through the atmosphere

Consider now the variation with depth z of the horizontally-averaged vertical fluxes of

kinetic energy Fke(Z), enthalpy Fep(Z), heat diffusion Fdiff(Z) , and viscous dissipation Fdiss(Z ).

If u and w denote the horizontal and vertical components of the physical velocity vector

u(x, z, t), then the fluxes are defined

1 4#
1 tObl- w _ -- pl, l'wdx (16)

Fke(Z) = 7 4d 0

(Fep(Z) = cp pT'w - _ T'wdx
_,y-l J4/M

(17)

OT
V i.(z) = c.px,-=- (18)

oz

(uOU +
Fvisc(Z)= Pvt _" Oz _--

4w 0w 0w 2w c_u')

+u-- "_x) (19)30z Or. 3

The expression for Fep has been simplified by exploiting the equilibrium mass conservation

equation _ = 0. The total flux of energy transported across each horizontal plane is

Ftot -- Eke q- Pep -t- Fdiff q- Fvisc (20)

Fig. 3 shows the run with dimensionless depth z/d of the various energy fluxes expressed in

units of po[_To]#] 3/2 at time t = 60. Fig. 4 shows the individual dimensionless kinetic energy

flux components Fke(i, j) and those of the enthalpy flux Fep(i, j) at each grid point (i, j) in the

modelled zone, plotted against the vertical component w of velocity expressed in units v0.

Looking at Fig. 4, we see that Fke(i, j) has a cubic distribution. This result, which was also

22



foundby Cattaneoet al. (1991),is to beexpected,especiallyfor the highervaluesof w since

the velocity vector u is directed principally along the Oz axis, giving lul2 - w 2 and hence

1 3
Fke = 2PW. For lower values of w, say for ]w[ z 1.5v0, the upward and downward

components of the kinetic energy flux cancel each other, giving no net flux. This result

concurs with the conventional mixing length of convection.

The symmetry between the strengths of the upflows and downflows breaks down for the

higher values of vertical velocity w. As a result, there is a net downward (positive) flux of

kinetic energy at each depth z as seen in Fig. 3. Much of the net downflux of kinetic energy

and also the net upward flux of enthalpy is due to the very strong downflow current near

Xl _- 1.3. The origin of this upflow/downflow asymmetry, which is also present in the

numerical simulations of Hurlburt et al. (1984), Chan & Sofia (1989), Cattaneo et al. (1990,

1991) and Dyt & Prentice (1998), may be traced to the condition of fixed temperature T= To

at the top boundary. This condition ensures a steady supply of cold, negatively buoyant gas at

the head of each downflow. At the lower boundary (z = d), however, the temperature is not

fixed. Thus the destruction of the superadiabatic structure of the lower atmosphere by the

descending low entropy gas means that warm rising gas enjoys only weak upward buoyancy.

Next, we note that except near the upper and lower boundaries, the bulk of the energy

transfer through the atmosphere is facilitated principally by convective motion (i.e., by Fke(Z)

and Fep(z)) rather than by diffusive exchange (Fai_). We also note that in the upper 50 percent

of the atmosphere the enthalpic flux is by far the largest of the three convective fluxes Fke,
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fep , and Fvisc. This is so since the downflow of very cool gas at Xl "_ 1.3 has not achieved full

speed. Also Fep is everywhere much larger than Faiff, except near the boundaries. The viscous

heating flux Fvisc is mostly negligible everywhere, except near the boundaries. At the top and

bottom boundaries, all vertical motion ceases (i.e., w = 0) so each of Fke, Fep, and F_i_c are

zero there.

Diffusion is the sole energy transfer mechanism at the boundaries z = 0 and z = d. It also

plays an important role in part of the deep atmosphere near z _ 0.8d, where Fke and Fep nearly

cancel each other out. Here Faiff is comparable with the size of the total convective flux

Fco, v = Fk_ + F_p + Fvisc. For most of the atmospheric interior, however, large-scale

convection is the main energy transfer mechanism.

Consider next Fig. 5, which shows the variation of the various energy flux components with

horizontal distance x/d at time t = 60. Spatial averaging is now performed in the vertical

direction yielding the quantities Fke._(x), F_p,v(x), Fdiff, v(x), and Fvisc,v(X). Thus,

I0_J , etc. The unit of flux is po[9_To]/.t] 3/2 as before. We see that theFke._(x) = -}- y/-,-u2w _az

kinetic energy flux Fke,v(x) and enthalpy flux are strongly correlated, as is to be expected.

Thus, the very strong positive downflux of kinetic energy at Xl = 1.3 is accompanied by an

equally strong but oppositely directed flux of enthalpy. The descending gas is, of course,

much cooler than the mean surroundings so F_p,v <0. The two fluxes Fke,v and Fep,v

effectively cancel each other out in this downflow. At x_ = 3.8, however, there is a weak

upflow of gas that is slightly warmer than the mean surroundings. Here the two fluxes Fke,_
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and Fep,v work together to yield a net upflow of energy in that section of the atmosphere.

Cattaneo et al. (1991) also observed that it is the weaker components of convection which

contribute most to the net transfer of heat through the atmosphere. The very strong

components simply serve to redistribute the various energy ingredients around the

atmosphere, so creating a large reservoir of mechanical energy.

6.4 Comparison with a previous simulation

The picture presented here differs significantly from the one found earlier by Dyt & Prentice

(1998). In this previous simulation, heat diffusion was mostly facilitated by a velocity-

independent thermal diffusivity. Diffusion controlled most of the heat transfer through the

atmosphere. In the present simulation, the thermal diffusivity Kzis derived via a subgrid-scale

eddy formalism. It depends on the velocity field ui and, in particular, is proportional to the

magnitude of the various gradients Oui/Ou _ as described in Section 3. These gradients are

generally smaller in the middle atmosphere and far from the boundaries. In these parts,

thermal diffusion is thus a minor carrier of energy compared to the convective mechanisms.

Another principal difference between the present simulation and that of Dyt & Prentice

(1998) is the unsteady character of all those physical quantities which depend directly on the

velocity field ui. This is especially apparent for the energy fluxes. Not only does the ratio of

the total flux leaving the top of the atmosphere to that at the base, namely Ftop/Fbase, remain

unsteady with time, as seen in Fig. 1, but the total flux at each depth is also time dependent.

Cattaneo et al. (1991) have also reported the unsteady character of the convection in the
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regime of low Prandtl number, or viscosity, when the flow is highly turbulent. They find that

'there can be fluctuations in the values of the horizontally-averaged fluxes of up to 30

percent.' In the present simulation the unsteady behaviour of the energy fluxes is most likely

due to the fact that the turbulent viscosity and thermal diffusivity are velocity dependent.

This renders the system of equations for the thermal evolution of the atmosphere extremely

non-linear. The solution is now much more complex and prone to instability. The convection

thus exhibits turbulence.

7. RESULTS: THE LONG-TERM PHYSICAL STRUCTURE AND

TURBULENT STATE OF THE ATMOSPHERE

7.1 The long-term mean profiles of temperature, density, and pressure

Consider now Figs. 6, 7, and 8 which show the run of the horizontally-averaged temperature

T(z,i), density _(z,t), and pressure _(z,t) with depth z at time t = 60. As noted in Section

6. I, the very strong downdraft of low entropy gas profoundly influences the thermal structure

of the lower atmosphere. The descent of this cold gas destroys much of the superadiabatic

excess of the lower region and flattens the temperature profile with increasing depth. The

initial quiescent atmosphere has a uniform polytropic index _(z,0)= 0(ln_)/0(lnT)= 1. For

the evolved atmosphere, _(z,60) rises sharply from 1 to the adiabatic value _ad = 2.5 as

z goes from 0.1d to 0.2d. It then remains bounded between 1.5 and 2.5 on the interval

0.2d _<z < 0.75d, with a mean of 2. At z = 0.75d, the gas becomes adiabatically neutral

again, with _(0.75d,60) -_ 2.5. This is evidenced in the velocity flowline diagram in Fig. 2

which shows pockets of gas that are neither moving up or down from this level.
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For z > 0.75d, _(z,60) increases sharply with depth so that the bottom 25 percent of the

atmosphere is actually rendered subadiabatic by the powerful downdraft of gas at x = 1.3d.

Superadiabaticity returns only at z = d due to the imposed temperature gradient, given by

equation (15b). This provides the heat flow into the base of the atmosphere. Rising updrafts

which form near the base thus enjoy very limited opportunity for buoyant lift compared to

the favourable conditions available to the downdrafts at z = 0. This result is a sustained

feature of the evolved convective flow. That is, the horizontally-averaged profiles T(z,t),

,_(z,t), and "fi(z,t) exhibit very little time dependence, despite the large temporal

fluctuations of the convective fluxes, as mentioned in Section 6.4. The average difference in

T(z,t) between t = 54 and t = 60, for example, is less than 1 percent at all depths.

Another important feature to notice in Fig. 6 is that in the upper 10 percent of the

atmosphere, and especially in the top 5 percent of its height, the horizontally-averaged

temperature gradient OT/Oz actually steepens up and exceeds the initial, superadiabatic

gradient 0=10 by a factor of about 3. For z<0.1d, the local polytropic index

_(z,60) < m_n = 1. For z z 0.07d, g(z,60) < 0 and at z = 0, g(0,60) -- -0.65. The upper 7

percent of the atmosphere is thus so convectively unstable that a steep density inversion takes

place. This unanticipated but extremely important discovery is clearly observed in Fig. 7. The

mean density ,_(z,60) rises a factor 3.5 times the initial physical value P0 at z = 0.
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7.2 Origin of the steepenedtemperature gradient and density inversion at the top of

the atmosphere

The greatly steepened temperature gradient and density inversion at the top of the model

atmosphere are due to the fact that the turbulent diffusive flux Fdiff is directly proportional to

the gas density p. At the top and bottom boundaries, all of the convective fluxes are zero

since w - 0. The energy transfer at these levels is achieved solely by diffusion. We have also

seen that the convection fluctuates about a long term [It] quasi-equilibrium state defined by

the energy balance equation pjct(dT_t/dz)]z=0 -- (To_/d)p_tlct Iz=d , noting that the mean

temperature gradient at the base is constrained to match the value To(9/d by virtue of the

boundary condition there (equation 15(b)). Here ,Bjt(z) is the long-term average of _(z,t). It

differs from p(z,60) by < 1 percent. _ (z) -_ T-(z,60) is the long-term average temperature

at depth z. Now the turbulent diffusivity xt is proportional to the magnitude S of the velocity

deformation tensor Sis defined in Section 3. On the boundaries S - [(c3u/_3x)2 + (c_v/c_z)2]1/2.

This quantity has a similar mean value S- at z = 0 as at z - d, to within a factor of 2. With fair

approximation therefore, returning to physical units, we have

-IdTIt _ (ToO/d)_ t (a)/,_lt (0) (21)

dz z--O

Hence as the density at the top boundary ,_t(0) is always much less than that at the base,

namely, _,(d), it follows that d_/dz _=0>> Totg/d. This accounts for the steepening of the

temperature gradient near the top boundary.
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Next considerthe idealgasequationp = p'N T[u. Applying horizontal averages, the numerical

simulation yields _ -_ ,_,9_T_/p to within 0.5 percent of accuracy at each level z.

Differentiating with respect to z, we have

_d_]dz _- (l.d g_)d F,,Idz - _,,cl_Idz (22)

Hence if dT_,(z)ldz is sufficiently large then d_,(z)ldz < 0 and a density upturn occurs.

Now the vertical gradient of the mean pressure P_t(z) is mostly controlled by gravitational

stratification and less so by the influence of convective motion. This is seen in Fig. 8, which

shows the run of mean pressure ff with depth for both the initial and evolved atmospheres.

The slopes are everywhere similar. In fact, it follows readily from equation (10) that by

setting a/c_t = 0 and applying horizontal averaging, as well as using equation (15a) and

ig-noring viscous stress, that

d_,,(z) -_ (NTo/pd)(l+min)O_t(O) (23)
 1-=o

Since T_,(0) = To, it now follows from equations (21) and (22) that

dE,(z) I
I:=o _ [I + m,. - _,,(d)l_t(O)]O_t(O)Id

choice of parameters min= 1, 0= 10, we havethe given

(24)

For _(d,60) = 14.7Po,

,_(0,60) = 3.51:,o, and so d,_t(z)/dz]_=o =-77Po/d from equation (24). This value compares

very well with the actual density gradient O_(z,60)/Oz -=o = -78Po/d Nven by the numerical

simulation at time t = 60.
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7.3 The wave number spectrum of kinetic energy

Lastly consider Figure 9 which shows the globally-averaged, Fourier wave number spectrum

l _' "
(E(kl, k2)) of the kinetic energy per unit mass 7u-(z, j) plotted as a function of the horizontal

wave number kl = 1, 2, 3 .... 200 for four vertical wave numbers k2 = 1, 8, 22, and 43 in the

integer domain 1, 2, 3 .... 50 at time t = 60. Recalling that the two-dimensional model

atmosphere consists of N × M Cartesian gridpoints (L j) where N = 200 and M = 50, we

define

el. J (i, j) = 2u(I,J) . u(I + i,J + j) (25)

E,.j(kl,k2)= _"e_.j(i,j)sin sin 2--2J
i=l j=l

(26)

N M

_ 1 _ El.j(kl,k2 ) (27)
and (E(kl, k2)) NM 1=1J=t

The function (E(k_, k2)) is the discrete Fourier sine transform of the spatial covariance of

velocity, averaged over the whole atmosphere.

Now according to the Kolmogorov (1941) theory of stationary isotropic turbulence, the

function (E(ka, k2)) should exhibit the power law behaviour (E) oc U 5/3 for total wave number

k = _ + k_ >> kp_ak. Here kpeak is the wave number where the bulk of the energy resides and

(E) peaks (Landahl & Mollo-Christensen 1992, p. 59). Because the atmosphere is vertically

stratified, it is not clear that the conditions of local isotropy are satisfied in the Oz direction

except at places where the vertical grid size A2 = d/M is much smaller than the local pressure

scale height h2 =p/(Op/Oz) (cf. Chan & Sofia 1986). For the initial atmosphere, we have
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A2/h2 "- 20/(1 + Oz/d)M. Since 0 = 10 and M = 50, the condition for isotropy is easily met at

the base of the atmosphere (z - d) but barely so at the top. Fortunately, this condition is

easily satisfied at all scales in the horizontal direction. We therefore expect (E(kl, k2)) to

exhibit the Kolmogorov power law dependence (E)oc k1-5/3 with respect to k_ for all

kl >> kpe_g and kz >> kpeag provided that k 2 >> k 2 also, so that _1"-+k22 _k I.

Inspecting Fig. 9, we observe that the maximum value of (E(k_, k2)) for each fixed/<2 occurs

at k_ = 3. That is, kpeak "_ 3. The same value kpeak -_ 3 applies to the distribution of (E) with

respect to k2 though the profile for kz = 3 is not shown. In any event, we see that (E(kl, k2))

diminishes rapidly for both kl >>/<peak and k2 >> kp_ak. Furthermore, for those sections of the

curves for k2 = 22 and 43 where both of these inequalities are satisfied, and also k ( >> k2z,

(E(kl, k2)) does scale as k1-5/3. That is, the wave number spectrum for the kinetic energy per

1 "_

unit mass, namely 7u', does indeed exhibit the Koimogorov power law expected for

stationary isotropic turbulence.

We conclude that the Smagorinsky subgrid-scale formalism for dealing with the influence of

turbulent motions whose length scale is smaller than the grid size A has successfully worked

in this numerical simulation. That is, the choices Cv = 0.4 and _rt= ½ for the Smagorinsky

constant and turbulent Prandtl number, respectively, have resulted in a kinetic energy wave

number spectrum (E(kl, k2)) which displays the expected characteristics of stationary
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turbulence for wave numbers kl close to the cutoff value kc = 200. That is, kc appears to lie

within an inertial subrange.

8. CONCLUSIONS AND DISCUSSION

8.1 Summary of main results

A computational scheme has been presented to numerically simulate the onset and evolution

of turbulent, supersonic thermal convection in a 2D rectangular section of a gas layer. The

layer is heated from below and stratified across many pressure scale heights by a uniform

gravitational field. The purpose of this calculation is to reproduce the physical conditions in

the outer layers of the protosolar cloud [PSC] in relation to the modem Laplacian theory of

Solar System origin (the MLT--see Section 1). A constant temperature gradient

OT/_z = ToO/d, with 0 = 10, is maintained at the base z = d. Here To is the temperature on the

top boundary (z = 0), which is also kept fixed. This boundary corresponds to the photosurface

level of the PSC. The initial run of density with temperature is superadiabatic, with

polytropic index rain = 1. The adiabatic index is 2.5, corresponding to a diatomic gas.

The present numerical simulation differs from the earlier one reported by Dyt & Prentice

(1998) in that both viscous stress and thermal diffusion are now entirely modelled by the

subgrid-scale turbulent eddy formalism due to Smagorinsky (1963). This procedure allows

one to include the influence of all scales of the convective flow when the Reynolds number

Re-_ O(10 _2) associated with molecular diffusion greatly exceeds the largest Reynolds

number Remax -_ O(L2/A 2) -104-106 of a flow that can be completely resolved on the
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computational domain. Here L and A are the lineal width and grid size of the domain. The

large scale flow is solved for exactly using a flux-corrected transport technique due to

Zalesak (1979). The influence of motions whose size is less than A is accounted for with the

use of the velocity-dependent turbulent viscosity vt and thermal conductivity _ct devised by

Smagorinsky.

Convective motion sets in quickly and soon evolves to a quasi-equilibrium state. This state is

attained when the diffusive heat flux at the top boundary, namely Ftop = cpGOT/Ozl.= o first

matches the heat flux entering the base, namely Fbase = GOpG :=_. The fluxes of kinetic

energy, enthalpy, and viscous dissipation vanish on these boundaries because the vertical

component Ue of velocity is zero there. Within the interior of the atmosphere, all of these

convective fluxes as well as the diffusive flux are unsteady and vary by up to 30 percent after

quasi-equilibrium is established. The convection is thus turbulent. The origin of the

unsteadiness is due to the fact that vt and xt are velocity dependent, so rendering the system

of equations for momentum and energy balance to be extremely non-linear. Further evidence

for the turbulent character of the large-scale flow comes the Fourier wave number spectrum

of kinetic energy (E(k_, k2)). This exhibits the familiar Kolmogorov power law spectrum

(E') oc k]-5/3 for wave numbers kl close to the horizontal grid cutoff value kc = Xd/A = 200,

where Xd is the width of the atmosphere and X = 4 is the aspect ratio for the simulation.

The long-term, large-scale convective flow consists of a row of adjacent pairs of giant

convective cells of opposing circulation. Each cell pair spans the height of the atmospheric
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layer. As also seenin Dyt & Prentice (1998),there is an asymmetryin the velocity and

spatialstructureof the upflows and downflows.The downflows areswift and narrowand

consist of low entropy gas that is much denser than the mean surroundings.The peak

downflow speedoccursat depthz - 0.55d and has local adiabatic Mach number M -= 1.08.

The upflows are broader and more sluggish and consist of gas that is barely warmer than the

surroundings, as seen in Fig. 2. The peak upflow speed occurs at depth z = 0.65d where

M = 0.65. Overall, therefore, the maximum convective velocities found in this simulation are

only just mildly supersonic.

The most important discovery of the present simulation is the steepening of the mean vertical

temperature gradient dT_,/dz at the top of the long-term atmosphere by a factor of about 3

times the initial dimensionless value OTo/d, with t9 = I0. Correspondingly, there is an upturn

of mean density At(z) as z _ 0, with _,(0) being 3.5 times the initial density P0. This

situation comes about because the convective heat fluxes vanish at z = 0 and z = d, and the

thermal diffusive flux Fdiff = cpPtftc3T/cqz is proportional to the density p. Since _-,(z) has

approximately the same value at z = 0 as at z = d, long term energy balance dictates that

d_t/dz -=0 = (To/d)Op_t(d)/P_t(O). Hence d_t/dz z=0 greatly exceeds OTo/d. It then follows

from considerations of pressure balance that the sharp fall in T_t(z) as z ---, 0 is accompanied

by a sharp rise in ,_,(z). In equation (24) we found that the strength of the density inversion

is proportional to the imposed temperature gradient 0 at the base of the atmosphere.
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8.2 Implications for the modern Laplacian theory

It remains to discuss the impact of these calculations on the modem Laplacian theory [MLT]

of Solar System origin. Now in order for the MLT to be valid, it is necessary that two

important criteria be satisfied. First, it is necessary that the mass distribution of the protosolar

cloud [PSC] be very centrally condensed, thus allowing the contracting cloud to rid itself of

excess spin angular momentum at the expense of losing very little mass. This helps explain

the low mass of the planetary system relative to the Sun. Second, it is necessary that a very

steep density inversion take place at the photosurface of the PSC, with the density rising

30-40 times the expected value for wholly adiabatic cloud structure of the same photosurface

temperature To and density P0. This enables the PSC to store above its photosurface 30-40

times more mass than expected. If such an event occurs, the contracting cloud proceeds to

shed a discrete system of concentric gas rings whose orbital radii match the mean orbital

spacings of the planets.

Previously it has been proposed that both of the above criteria may be solely achieved by the

action of a radial turbulent stress (pt/)t 2) arising from supersonic buoyant motions within the

PSC. For a non-rotating cloud, (ptvt 2) = flpGM(r)/r where M(r) is the mass interior to radius

r and fl is a dimensionless constant (Prentice 1973). This non-thermal stress greatly expands

the outer tenuous layers of the cloud, so lowering the axial moment-of-inertia factor f, as

required. If fl - 0.1 then (PtDt2) rises a factor Pph - 30-40 times the gas pressure pfflT/g just

below the photosurface (Prentice 1996a, 2001a). The subsequent degeneration of all upward

convective motion at the photosurface results in the formation of a dense lid of non-turbulent
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gas. The density p+ of this lid at the photosurface exceeds that p_ of the fully turbulent gas

just below it by the factor p+/p_ = 1 + Pph - 35, as required.

The problem with the model above, as stated in Section 2, is that such large turbulent stresses

are unlikely to be achieved. They imply mean vertical convective velocities having Mach

number M = .fPph/y _ 5. Usually M < 2, though Cattaneo et al. (1990) have reported a peak

M = 2.7 in one numerical simulation. This implies a peak Pph "=-10.

What has emerged from the numerical simulation reported here points a way forward for

satisfying the criteria needed for the MLT without having to resort to unreasonably large

convective velocities. First, as seen in Fig. 7 showing the run of the long term, horizontally-

averaged density ,_,(z) versus depth z, there is a net shift of mass towards the base of the

model atmosphere. This corresponds to decrease in the axial moment-of-inertia factor of the

PSC, as required by the MLT. Between z = 0.1d and z = 0.8d, the mean density ,o_t(z) of

the long-term atmosphere is less than that of the initial quiescent atmosphere while as z ---* d,

_,(z) progressively exceeds _n(z)- The progressive compaction of the gas with increasing

depth has, however, been brought on by the destruction of superadiabaticity through

convective heat exchange, rather than through the action of vertical dynamical stress

(Ptot2) =pw z, as proposed by Prentice (1973). Here w is the vertical component of physical

velocity in the convective flow. As we saw in Fig. 2, the bulk of the flow is directed

horizontally. The upflows and downflows each occupy only about 10 percent of the cross-

sectional area of the model atmosphere at z = 0.5d. And the ratios Pt = _ w2/gqT of vertical
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dynamical stress to gas pressureare both near their maximum values of 0.6 and 1.6,

respectively.This yields a mean value P_ -_ 0.2 at z=0.5d. At z=0.3d, Pt _ 0.1. At

z = 0.1d, where the upflows and downflows occupy -7.5 percent and -4.5 percent of the

cross-sectional area, and the P, values are -0.08 and -0.8, we have _ = 0.04. Overall,

therefore, the structure of the atmosphere is barely influenced by vertical dynamical stress in

this simulation. It is superadiabaticity which has produced the most change.

As far as the second criterion of the MLT is concerned, we have found that there is indeed a

sharp and significant density inversion at the top of the model atmosphere. The density

,_t(0) at z = 0 is 1.8 times that at z = 0.07d and 3.5 times the density P0 at the top of the

initial atmosphere. But again, this density increase has not come about as a result of turbulent

stress. The small change in the value of P, from 0.04 to 0, as z passes from 0.1 to 0,

contributes at most 4 percent of the 80 percent density increase between these levels. Instead

the bulk of the density upturn is due to the dramatic increase in superadiabaticity as z --_ 0.

This has come about through the use of the subgrid-scale turbulence formalism to model the

influence of convective motions whose scale is less than the computational grid size.

8.3 Finale

A picture of very strong thermal convection in a 2D model rectangular section of the outer

layers of a non-rotating protosolar cloud has been presented. This model assists the validation

of the MLT. Nonetheless, for the given choice of model parameters, especially for the initial

dimensionless temperature gradient 0--i0, the observed surface density increase factor
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_, (O)/po = 3.5 at the top boundary falls a long way short of the required value of 35. Now

according to equation (24), the vertical gradient of the mean density ,°it (z) at z = 0 is

proportional to 0. By suitably increasing 0, therefore, it may be possible to achieve the

desired density upturn factor of 35. Such an action will make the convection more vigorous,

as follows.

From equation (10) it follows that the sum of the horizontally-averaged long-term pressure

and dynamical stress satisfies the dimensionless equation 0(p_tT_, + p_tuz)/Ox2 = (m_n+ 1)0,_,,

ignoring horizontal gradients and viscosity. Hence we expect u," and u 2 at any depth to scale

in proportion with 0. Increasing 0 by a factor -7.5, say, may increase u," everywhere by

about the same factor. And as the temperature T(z,t) is heavily constrained by the boundary

conditions, and has the same value near z = 0.5d in both the initial and long term states, we

expect that the peak value of P, = u_/T in the downflow, which also occurs at z -_ 0.5d, to

increase from 1.6 to -12. If the value of P, near z = 0.1d, where ,_,(z) is a minimum, also

increases by the same factor of 7.5, then the density ,_t (0) at z = 0 is increased by the factor

-(7.5 x 1.3) = 10. This yields an overall density upturn factor _,(O)/Po _- 35, as needed.

The peak Mach number for this realization is Mpeak -_ 2.9, which is physically acceptable.

The suggestion that supersonic turbulent convection played an important role in the

formation of the Solar System may thus be not such a far-fetched idea after all. Clearly many

more numerical simulations are needed to determine whether all of the criteria required by

the modern Laplacian theory can be met. The three-dimensional structure of the protosolar
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cloudand the influenceof rotationalsoneedto be takeninto account.The resultsreported

hereprovidea verypromisingstart.
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Figure 1. Plot of the total energy flux Fbase entering the base of the atmosphere (curve

marked BASE) and the total energy flux Ftop leaving the top (curve marked TOP) plotted

against elapsed time t. Also shown is a plot of the ratio Ftop/Fba_e.At the top and bottom

boundaries all energy is transmitted by the thermal diffusive flux Fdiff , which is defined by

equation (18). This flux varies with time, even after a quasi-equilibrium is established by

time t = 10, since Fdiff depends on the spatial gradient of the large-scale velocity field via the

turbulent diffusivity I¢t (defined by equations (3)-(5)), and this field remains unsteady at all

times. The physical unit of energy flux is ,Oo(9_To//..t_/', where /90 and To denote the initial

density and temperature at the top boundary.
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Figure 2. Contours of constant temperature and density in the model atmosphere at time

t = 60. Here (x_ ,x2) are dimensionless Cartesian coordinates, and the convective flow is

assumed to be horizontally periodic over a physical distance 4d where d is the layer

thickness. The bottom portion of the figure shows the streamlines of the velocity field. The

diagram clearly illustrates the very strong downdraft of cold dense gas at xl _ 1.3 and the

much weaker updraft of warm lighter gas at xl _ 3.7.
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Figure 3. The four components and total of the vertical flux of energy through the

atmosphere, plotted against vertical depth z at time t = 60. The curves marked A and B are

the horizontal average of the kinetic energy flux Fke and enthalpy flux Fep as defined by

equations (16) and (17). These depend directly on the velocity field u i which is turbulent, so

causing the small-scale fluctuations with depth. The other curves C and D show the

horizontally-averaged thermal diffusion flux Fdiff and viscous dissipation flux Fvisc defined by

equations (18) and (19). These fluxes exhibit less fluctuation with depth, and Fvisc is

negligible at most depths. At the top and bottom boundaries the convective fluxes vanish and

all heat is transported by thermal diffusion. The heavy curve is the total energy flux Ftot, as

given by equation (20).
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Figure 4. Phase diagrams of the kinetic energy flux components Fke(i, j) and enthalpy flux

components Fep(i, j) plotted against dimensionless vertical velocity u2 at time t = 60. Each dot

corresponds to a grid point (i, j) in the model atmosphere, with i = 1, 2, ... 200 and j = 1, 2,

... 50. The physical unit of flux is po(9tTo//.z) 3'2 and that of velocity is (_tlT0//_) _'2 . It is clear

from this diagram how the large flux of kinetic energy in the strong downflows is balanced

out by a corresponding large upwards flux of enthalpy. The maximum downflow speed is

u2 = 2.8. It is associated with Fke = 98.5 and occurs at depth x2 = 0.55 where p= 9.0, T= 4.8

and the vertical Mach number is M = u,./,f_ = 1.08. The maximum upflow speed is

u2 = -2.0 where Fk_ = -34.3. Here x2 = 0.65, p = 8.5, T = 6.9 and M = 0.65.
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The horizontally-averaged temperature T(z,t) versus depth z at times t = 0 and

t = 60. The onset of convection flattens the temperature gradient in the lower - 90 percent of

the atmosphere due to the destruction of the initial superadiabatic excess by the powerful

downdraft of cold dense gas at xl -- 1.3. At the very base of the atmosphere an increase of

gadient is necessitated to meet the boundary condition OT/Oz .=d= OTold specified by

equation (15b). In the upper 10 percent of depth, however OT/Oz increases to - 3.3 times the

initial gradient OTo/d gradient, with 0= 10, in order for the diffusive flux Fdiff oc tgKtOT/Oz

to carry the total energy flux through the top boundary, where all of the convective fluxes are

zero.
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Figure 7. The horizontally-averaged mean density _(z,t) versus depth z at times t = 0 and

t = 60. The prominent features to notice are (i) the steepening of the density gradient of the

evolved atmosphere towards the base z = d due to the destruction of the initial superadiabatic

excess of the lower atmosphere by the strong downdraft of negative enthalpy, and (ii) the

existence of a density inversion at the top boundary. This latter phenomenon comes about

because the mean temperature T(z,60) decreases so sharply as z _ 0 that pressure balance

necessitates a rise in density. Essentially, SGS modelling has greatly enhanced the mean level

of superadiabaticity in the top layers to the point that the mean polytopic index

_(z,t) = 8(ln,_)/c_(InT-) becomes negative.
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radical changes exhibited by the mean density and temperature profiles (Figs. 6 and 7).
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The globally-averaged wave number spectrum (E(kl, k2)) of the specific kinetic
]

energy v_u" plotted against the horizontal wave number kl for various vertical wave

numbers k2. For the large values of kz and k_ > 20, (E) decays with k= in accord with the

Kolmogorov power law spectrum k1-5/3 whose slope is indicated by the straight line segment

in this bi-logarithmic plot. The fluctuations in (E) are due to the turbulent character of the

large-scale velocity field. The result confirms that the Smagorinsky formalism for modelling

the influence of small-scale turbulent motions, whose wave numbers k_ exceed the grid cutoff

wave number k_ = 200, is working correctly in this simulation. This situation comes about for

the choice of the constants C_ = 0.4 and Gt = I/3, as discussed in Section 3. That is, the rate

of thermal energy production by viscous dissipation at large values of k= matches the rate at

which thermal energy is being injected back into the system as kinetic energy at smaller

values of k_, so producing the familiar Kolmogorov kinetic energy wave number spectrum.
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